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ABSTRACT

In this paper, Gamma­Pareto distribution is considered for
Bayesian analysis. The expressions for Bayes estimators of the
parameter have been derived under squared error,
precautionary, entropy, K­loss, and Al­Bayyati’s loss functions
by using quasi and inverted gamma priors.
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1. INTRODUCTION

The Gamma­Pareto distribution was proposed by Alzaatreh et al. [1]. They
obtained the various properties of this distribution and the method of
maximum likelihood was proposed for estimating the parameters. The
probability density function of Gamma­Pareto distribution is given by
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The joint density function or likelihood function of (1) is given by
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(2)

The log likelihood function is given by
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(3)

Differentiating (3) with respect to è and equating to zero, we get the
maximum likelihood estimator of è which is given as
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2. BAYESIAN METHOD OF ESTIMATION

The Bayesian inference procedures have been developed generally under
squared error loss function
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The Bayes estimator under the above loss function, say,
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posterior mean, i.e,
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Zellner [2], Basu and Ebrahimi [3] have recognized that the
inappropriateness of using symmetric loss function. Norstrom [4]
introduced precautionary loss function is given as
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The Bayes estimator under this loss function is denoted by
P�

�
 and is

obtained as
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Calabria and Pulcini [5] points out that a useful asymmetric loss function
is the entropy loss
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form having 1p .�  Thus can written be as

 � � � � 1eL b log ;  b>0.� � �� � �� �� � (9)

The Bayes estimator under entropy loss function is denoted by  
E�

�
 and

is obtained by solving the following equation
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Wasan [8] proposed the K­loss function which is given as
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Under K­loss function the Bayes estimator of � is denoted by  
K�

�
 and is

obtained as
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Al­Bayyati [9] introduced a new loss function which is given as
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Under Al­Bayyati’s loss function the Bayes estimator of � is denoted by
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 and is obtained as
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Let us consider two prior distributions of � to obtain the Bayes
estimators.

(i) Quasi­prior: For the situation where we have no prior information
about the parameter �, we may use the quasi density as given by
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where d = 0 leads to a diffuse prior and d = 1, a non­informative
prior.

(ii) Inverted gamma prior: Generally, the inverted gamma density is
used as prior distribution of the parameter � given by
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3. POSTERIOR DENSITY UNDER g
1
 ( )

The posterior density of � under g
1
(�), on using (2), is given by
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Theorem 1. On using (17), we have
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Proof. By definition,
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From equation (18), for c = 1, we have
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From equation (18), for c = 2, we have
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From equation (18), for c = –1, we have
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From equation (18), for c = c + 1 , we have
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4. BAYES ESTIMATORS UNDER g
1
( )

From equation (6), on using (19), the Bayes estimator of � under squared
error loss function is given by
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From equation (8), on using (20), the Bayes estimator of � under
precautionary loss function is given by
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From equation (10), on using (21), the Bayes estimator of � under entropy
loss function is given by
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From equation (12), on using (19) and (21), the Bayes estimator of �
under K­loss function is given by
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From equation (14), on using (18) and (22), the Bayes estimator of �
under Al­Bayyati’s loss function is given by
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5. POSTERIOR DENSITY UNDER g
2
( )

Under g
2
(�), the posterior density of �, using equation (2), is obtained as
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Theorem 2. On using (28), we have
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Proof. By definition,
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From equation (29), for c = 1, we have
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From equation (29), for c = 2, we have
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From equation (29), for c = –1, we have
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From equation (29), for c = c+1 , we have
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6. BAYES ESTIMATORS UNDER g
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From equation (6), on using (30), the Bayes estimator of � under squared
error loss function is given by
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From equation (8), on using (31), the Bayes estimator of � under
precautionary loss function is given by
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From equation (10), on using (32), the Bayes estimator of � under entropy
loss function is given by
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From equation (12), on using (30) and (32), the Bayes estimator of �
under K­loss function is given by
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From equation (14), on using (29) and (33), the Bayes estimator of �
under Al­Bayyati’s loss function is given by
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CONCLUSION

In this paper, we have obtained a number of estimators of parameter of
Gamma­Pareto distribution. In equation (4) we have obtained the maximum
likelihood estimator of the parameter. In equation (23), (24), (25), (26) and
(27) we have obtained the Bayes estimators under different loss functions
using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained
the Bayes estimators under different loss functions using gamma prior. In
the above equation, it is clear that the Bayes estimators depend upon the
parameters of the prior distribution. We therefore recommend that the
estimator’s choice lies according to the value of the prior distribution which
in turn depends on the situation at hand.
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